7.Binomial Theorem
hard

If the fourth term in the binomial expansion of $\left(\sqrt{\frac{1}{x^{1+\log _{10} x}}}+x^{\frac{1}{12}}\right)^{6}$ is equal to $200$, and $x > 1$, then the value of $x$ is

A

$10^4$

B

$100$

C

$10^3$

D

None of these

(JEE MAIN-2019)

Solution

$^{6} \mathrm{C}_{3} \times x^{- \frac{3}{2}(1+\operatorname{log} x)} \cdot \mathrm{x}^{\frac{1}{4}}=200$

$x^{\frac{1}{4}- \frac{3}{2}(1+\operatorname{log} x)}=10$

$\Rightarrow \frac{1}{4}-\frac{3}{2}\left(1+\log _{10} x\right) \cdot \log _{10} x=1$

$\Rightarrow 6 t^{2}+5 t+4=0, t=\log _{10} x$

$D<0$

So no real solution

All options are incorrect

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.